首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   510篇
  免费   59篇
  国内免费   200篇
测绘学   3篇
大气科学   7篇
地球物理   67篇
地质学   644篇
海洋学   28篇
综合类   7篇
自然地理   13篇
  2024年   6篇
  2023年   9篇
  2022年   14篇
  2021年   17篇
  2020年   22篇
  2019年   26篇
  2018年   37篇
  2017年   29篇
  2016年   25篇
  2015年   27篇
  2014年   30篇
  2013年   34篇
  2012年   46篇
  2011年   35篇
  2010年   22篇
  2009年   38篇
  2008年   38篇
  2007年   29篇
  2006年   31篇
  2005年   35篇
  2004年   30篇
  2003年   26篇
  2002年   22篇
  2001年   20篇
  2000年   19篇
  1999年   21篇
  1998年   20篇
  1997年   19篇
  1996年   13篇
  1995年   5篇
  1994年   7篇
  1993年   4篇
  1992年   5篇
  1991年   4篇
  1990年   1篇
  1988年   1篇
  1987年   1篇
  1978年   1篇
排序方式: 共有769条查询结果,搜索用时 312 毫秒
31.
Precambrian metaplutonic rocks of the São Gabriel block in southernmost Brazil comprise juvenile Neoproterozoic calc-alkaline gneisses (Cambaí Complex). The connection with associated (ultra-)mafic metavolcanic and metasedimentary rocks (Palma Group) is not well established. The whole complex was deformed during the Brasiliano orogenic cycle. Both metasedimentary and metavolcanic rocks as well as metaplutonic rocks of the Cambaí Complex have been sampled for geochemical analyses in order to get constraints on the tectonic setting of these rocks and to establish a tectonic model for the São Gabriel block and its role during the assembly of West-Gondwana. The major element compositions of the igneous rocks (Palma Group and Cambaí Complex) indicate a subalkaline character; most orthogneisses have a calc-alkaline chemistry; many metavolcanic rocks of the Palma Group show signatures of low-K tholeiitic volcanic arc basalts. Trace element data, especially Ti, Zr, Y, Nb, of most igneous samples from both the lower Palma Group and the Cambaí Complex indicate origin at plate margins, i.e., in a subduction zone environment. This is corroborated by relative enrichment in LREE, low contents of Nb and other high field strength elements and enrichment in LILE like Rb, Ba, and Th. The data indicate the possible existence of two suites, an oceanic island arc and a continental arc or active continental margin. However, some ultramafic samples of the lower Palma Group in the western São Gabriel block indicate the existence of another volcanic suite with intra-plate character which possibly represents relics of oceanic island basalts (OIB). Trace element data indicate contributions from andesitic to mixed felsic and basic arc sources for the metasedimentary rocks. The patterns of chondrite- and N-MORB-normalized spider diagrams resemble the patterns of the igneous rocks, i.e., LILE and LREE enrichment and HFS depletion. The geochemical signatures of most igneous and metasedimentary samples and their low (87Sr/86Sr)t ratios suggest only minor contribution of old continental crust.A geotectonic model for the São Gabriel block comprises east-ward subduction and following accretion of an intra-oceanic island arc to the eastern border of the Rio de la Plata Craton at ca. 880 Ma, and westward subduction beneath the newly formed active continental margin between ca. 750 and 700 Ma. The São Gabriel block represents relics of an early Brasiliano oceanic basin between the Rio de la Plata and Kalahari Cratons. This ocean to the east of the Rio de la Plata Craton might be traced to the north and could possibly be linked with Neoproterozoic juvenile oceanic crust in the western Brasília belt (Goiás magmatic arc).  相似文献   
32.
Mount Bangou, an Eocene volcano (40K–40Ar ages between 44.7 and 43.1 ± 1 Ma) is the oldest dated volcano of the Cameroon Line. In this region, two magmatic series, evolving by fractional crystallization, show transitional affinities that are exceptionally known in this sector. Mineral compositions of basaltic rocks (scarce modal olivine and occurrence of normative hypersthene) as well as geochemical characteristics (low Ba, La, Ta contents and high Y/Nb ratios) are in agreement with this trend. The succession of magmas evolving in time from transitional to more typical alkaline compositions is evidenced in a continental setting. To cite this article: J. Fosso et al., C. R. Geoscience 337 (2005).  相似文献   
33.
PLANK  T. 《Journal of Petrology》2005,46(5):921-944
Arc magmas and the continental crust share many chemical features,but a major question remains as to whether these features arecreated by subduction or are recycled from subducting sediment.This question is explored here using Th/La, which is low inoceanic basalts (<0·2), elevated in the continents(>0·25) and varies in arc basalts and marine sediments(0·09–0·34). Volcanic arcs form linear mixingarrays between mantle and sediment in plots of Th/La vs Sm/La.The mantle end-member for different arcs varies between highlydepleted and enriched compositions. The sedimentary end-memberis typically the same as local trench sediment. Thus, arc magmasinherit their Th/La from subducting sediment and high Th/Lais not newly created during subduction (or by intraplate, adakiteor Archaean magmatism). Instead, there is a large fractionationin Th/La within the continental crust, caused by the preferentialpartitioning of La over Th in mafic and accessory minerals.These observations suggest a mechanism of ‘fractionation& foundering’, whereby continents differentiate intoa granitic upper crust and restite-cumulate lower crust, whichperiodically founders into the mantle. The bulk continentalcrust can reach its current elevated Th/La if arc crust differentiatesand loses 25–60% of its mafic residues to foundering. KEY WORDS: arc magmatism; continental crust; delamination; thorium; sediment subduction  相似文献   
34.
Post-collisional magmatism in the southern Iberian and northwesternAfrican continental margins contains important clues for theunderstanding of a possible causal connection between movementsin the Earth's upper mantle, the uplift of continental lithosphereand the origin of circum-Mediterranean igneous activity. Systematicgeochemical and geochronological studies (major and trace element,Sr–Nd–Pb-isotope analysis and laser 40Ar/39Ar-agedating) on igneous rocks provide constraints for understandingthe post-collisional history of the southern Iberian and northwesternAfrican continental margins. Two groups of magmatic rocks canbe distinguished: (1) an Upper Miocene to Lower Pliocene (8·2–4·8Ma), Si–K-rich group including high-K (calc-alkaline)and shoshonitic series rocks; (2) an Upper Miocene to Pleistocene(6·3–0·65 Ma), Si-poor, Na-rich group includingbasanites and alkali basalts to hawaiites and tephrites. Maficsamples from the Si–K-rich group generally show geochemicalaffinities with volcanic rocks from active subduction zones(e.g. Izu–Bonin and Aeolian island arcs), whereas maficsamples from the Si-poor, Na-rich group are geochemically similarto lavas found in intraplate volcanic settings derived fromsub-lithospheric mantle sources (e.g. Canary Islands). The transitionfrom Si-rich (subduction-related) to Si-poor (intraplate-type)magmatism between 6·3 Ma (first alkali basalt) and 4·8Ma (latest shoshonite) can be observed both on a regional scaleand in individual volcanic systems. Si–K-rich and Si-poorigneous rocks from the continental margins of southern Iberiaand northwestern Africa are, respectively, proposed to havebeen derived from metasomatized subcontinental lithosphere andsub-lithospheric mantle that was contaminated with plume material.A three-dimensional geodynamic model for the westernmost Mediterraneanis presented in which subduction of oceanic lithosphere is inferredto have caused continental-edge delamination of subcontinentallithosphere associated with upwelling of plume-contaminatedsub-lithospheric mantle and lithospheric uplift. This processmay operate worldwide in areas where subduction-related andintraplate-type magmatism are spatially and temporally associated. KEY WORDS: post-collisional magmatism; Mediterranean-style back-arc basins; subduction; delamination; uplift of marine gateways  相似文献   
35.
The formation of Ca-rich myrmekites is described in syntectonic syenites crystallized and progressively deformed under granulite facies conditions. The syenites are found in high- and low-strain zones where microstructure and mineral composition are compared. Heterogeneously distributed water-rich, late-magmatic liquids were responsible for strain partitioning into dry and wet high-strain zones at outcrop scale, where contrasting deformation mechanisms are reported. In dry high-strain zones K-feldspar and clinopyroxene are recrystallized under high-T conditions. In wet high-strain zones, the de-stabilization of clinopyroxene and pervasive replacement of relatively undeformed K-feldspar porphyroclasts by myrmekite and subordinate micrographic intergrowths indicate dissolution-replacement creep as the main deformation mechanism. The reworking of these intergrowths is observed and is considered to contribute significantly to the development of the mylonitic foliation and banding. A model is proposed for strain partitioning relating a positive feedback between myrmekite-forming reaction, continuous inflow of late-magmatic liquids and dissolution-replacement creep in the wet zone at the expenses of original mineralogy preserved in the dry zones. Melt-assisted dissolution-replacement creep in syntectonic environments under granulite-facies conditions may extend the field of operation of dissolution-replacement creep, changing significantly the rheology of the lower continental crust.  相似文献   
36.
Geological mapping of the Tucumã area has enabled the identification of dike swarms intruded into an Archean basement. The disposition of these dikes is consistent with the well-defined NW-SE trending regional faults, and they can reach up to 20 km in length. They were divided into three main groups: (i) felsic dikes (70% of the dikes), composed exclusively of porphyritic rhyolite with euhedral phenocrysts of quartz and feldspars immersed in an aphyric felsite matrix; (ii) mafic dikes, with restricted occurrence, composed of basaltic andesite and subordinate basalt, with a mineralogical assembly consisting dominantly of plagioclase, clinopyroxene, orthopyroxene and olivine; and (iii) intermediate rocks, represented by andesite and dacite. Dacites are found in outcrops associated with felsic dikes, representing different degrees of hybridization or mixture of mafic and felsic magmas. This is evidenced by a large number of mafic enclaves in the felsic dikes and the frequent presence of embayment textures. SHRIMP U-Pb zircon dating of felsic dikes yielded an age of 1880.9 ± 3.3 Ma. The felsic dikes are peraluminous to slightly metaluminous and akin to A2, ferroan and reduced granites. The intermediate and mafic dikes are metaluminous and belong to the tholeiitic series. Geochemical modeling showed that mafic rocks evolved by pyroxene and plagioclase crystallization, while K-feldspar and biotite are the fractionate phases in felsic magma. A simple binary mixture model was used to determine the origin of intermediate rocks. It indicated that mixing 60% of rhyolite and 40% basaltic andesite melts could have generated the dacitic composition, while the andesite liquid could be produced by mixing of 60% and 40% basaltic andesite and rhyolite melts, respectively. The mixing of basaltic and andesitic magmas probably occurred during ascent and storage in the crust, where andesite dikes are likely produced by a more homogeneous mixture at high depths in the continental crust (mixing), while dacite dikes can be generated in the upper crust at a lower temperature, providing a less efficient mixing process (mingling). The affinities observed between the felsic to intermediate rocks of the Rio Maria and São Felix do Xingu areas and the bimodal magmatism of the Tucumã area reinforce the hypothesis that in the Paleoproterozoic the Carajás province was affected by processes involving thermal perturbations in the upper mantle, mafic underplating, and associated crustal extension or transtension. The 1.88 Ga fissure-controlled A-type magmatism of the Tucumã area was emplaced ∼1.0 to ∼0.65 Ga after stabilization of the Archean crust. Its origin is not related to subduction processes but to the disruption of the supercontinent at the end of the Paleoproterozoic.  相似文献   
37.
吉尔吉斯斯坦中天山地质特征及研究进展   总被引:2,自引:1,他引:1       下载免费PDF全文
文章通过对近年来有关吉尔吉斯中天山研究进展的梳理,结合在吉尔吉斯斯坦的实地考察,系统论述了中天山基础地质情况,并简述与岩浆活动有关的成矿作用。吉尔吉斯斯坦境内的天山由"尼古拉耶夫线"和阿特巴什—伊内尔切克断裂划分为北、中、南3部分。中天山两侧的缝合带限定了早古生代古吉尔吉斯洋和晚古生代南天山洋的发展和消亡过程。组成中天山的不同块体大多具有古元古界的基底,古生代总体处于大陆坡-边缘海沉积环境。晚古生代产出与俯冲相关的岩浆作用和后碰撞岩浆作用,前者与斑岩型铜矿、接触交代型铜-金矿相关,后者与造山型金矿相关。  相似文献   
38.
In this paper, we present new U–Pb zircon ages, Hf isotope data and major and trace elements for Early Mesozoic granitic rocks in Mohe area in the Erguna Massif of northeast China to elucidate the southward subduction of the eastern Mongol–Okhotsk Oceanic plate in Early Mesozoic. Zircons from two representative intrusions, syenogranites and monzogranites, in the Mohe area are euhedral–subhedral in shape, display oscillatory growth zoning in cathodoluminescence (CL) images, and have Th/U ratios of 0.10–0.72, and in combination these features indicating that the zircons are of igneous origin. U–Pb zircon dating results demonstrate that the syenogranites formed at 245.1 ± 1.4 Ma and monzogranites formed at 212.2 ± 1.7 Ma. These granitic rocks are characterized by high SiO2, Al2O3 and (Na2O + K2O), low TFeO, MgO, TiO2 and P2O5 concentrations, belonging to the high‐K calc‐alkaline series. They are enriched in LREE and large ion lithophile elements (e.g., Rb, K, and Sr), depleted in HREE and high field strength elements (e.g., Nb, Ta, Th, and Ti), as well as very weak negative Eu anomalies (Eu/Eu* = 0.48 ~ 1.01). Their zircon εHf(t) values range from −7.9 to −2.0 and range from 0.20 to 0.49, in response to their two‐stage Hf model ages (TDM2) range from 1.40 Ga to 1.77 Ga range from 0.94 Ga to 1.24 Ga, respectively, indicating that primary magmas of syenogranites were derived from partial melting of newly accreted juvenile crustal material that formed from the enriched mantle during the Mesoproterozoic, monzogranites are generated by partial melting of newly accreted juvenile crustal material that formed from the depleted mantle during the Meso‐ to Neoproterozoic. We conclude, therefore, that the early Mesozoic granitic rocks of the Mohe area are associated with the continuous southward subduction of the Mongol–Okhotsk oceanic plate rather than the Paleo‐Asian and circum‐Pacific tectonic regimes.  相似文献   
39.
邦巴岩体位于拉萨地块西部革吉地区,由主体花岗岩、花岗闪长岩、闪长质包体及一系列近平行、南北向展布的花岗斑岩脉体组成。野外地质调查和LA-MC-ICP-MS锆石U-Pb定年表明,革吉地区白垩纪的两期岩浆活动分别发生在131~132Ma和127Ma。早期岩浆作用形成主体花岗岩、花岗闪长岩及闪长质包体,具有以下特征:(1)明显富集K、Cs等大离子亲石元素,亏损Nb、Ti、Zr等高场强元素;(2)具有明显的负Eu异常(Eu/Eu*=0.49~0.61)及负Ce异常;(3)具负εHf(t)值(-3.2~-0.3)及古老的地壳模式年龄(1.210~1.399Ga);(4)初始Sr同位素比值为0.70424~0.71472,εHf(t)值为-5.70~-5.54。晚期岩浆作用形成花岗斑岩脉体,具有以下特征:(1)富集K、Cs等大离子亲石元素,强烈亏损Nb、Ta、Ti等高场强元素;(2)基本不具有负Eu异常或具有轻微的负Eu异常(Eu/Eu*=0.74~0.87);(3)具有更老的Hf同位素地壳模式年龄(1.226~1.576Ga)及更负的大范围变化的εHf(t)值(-6.1~-0.7)。晚期岩浆作用锆饱和温度(777~796℃)及轻稀土元素不饱和温度(794~812℃)均高于早期岩浆的锆饱和温度(661~762℃)及轻稀土元素不饱和温度(750~769℃)。上述特征表明,两期岩浆作用均为中拉萨地块古老基底部分与地幔物质混染部分熔融的产物,随着岩浆作用的持续进行,岩浆中的古老地壳组分增加,熔体温度也增加,可能与南向俯冲的班公-怒江洋壳回转驱动的地幔岩浆活动向北迁移有关。  相似文献   
40.
扎兰屯地区位于二连 贺根山 黑河构造带中段,区内发育韧性变形叠加的晚古生代早期花岗岩类。本文在详尽的野外地质调查基础上,对该套花岗岩类的锆石U- Pb年代学和地球化学进行系统分析,研究其成岩年代序列,探讨岩石成因及构造背景,厘定韧性构造叠加的时限,进一步揭示扎兰屯地区额尔古纳 兴安地块和松嫩地块的拼合过程,为兴蒙造山带的区域构造演化研究提供新材料。大量年代学研究显示,扎兰屯地区晚古生代早期花岗质岩浆作用发生于405~325Ma之间,该作用可进一步细化为早中泥盆世(Ⅰ期、405~380Ma)、晚泥盆世—早石炭世初(Ⅱ期、365~350Ma)和早石炭世晚期(Ⅲ期335~325Ma)等3期。其中Ⅰ期和Ⅱ期花岗岩类属高钾—钾玄质钙碱性、准铝质—弱过铝质花岗岩类,可能为俯冲背景下岛弧岩浆活动形成的I型 分异I型花岗岩;Ⅲ期花岗岩类属中—高钾钙碱性、准铝质—弱过铝质花岗岩类,可能为后碰撞背景下岩浆活动形成的分异I型- A型花岗岩。该套花岗岩类普遍叠加韧性变形,可能为碰撞后侧向逃逸作用的产物,变形时限为晚石炭世末—早二叠世(308~290Ma)。大兴安岭北段晚古生代早期花岗质岩浆作用与额尔古纳 兴安地块和松嫩地块的碰撞拼合作用有关,扎兰屯地区二者的碰撞拼合时限可能为早石炭世中期。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号